Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 14818, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050337

RESUMO

Ferroic domain dynamics, as a function of external stimuli, can be collectively described as scale-invariant avalanches characterised by a critical exponent that are sensitive to the complexity of the domain microstructure. The understanding and manipulation of these avalanches lies at the heart of developing novel applications such as neuromorphic computing. Here we combine in situ heating optical observations and mean-field analysis to investigate the collective domain behaviour in pure-ferroelastic lanthanum aluminate (LaAlO[Formula: see text]) as a function of aspect ratio, the ratio of sample length to width, where the movement of the domains is predominantly driven by thermal stresses via thermal expansion/contraction during heat cycling. Our observations demonstrate that the aspect ratio induces (1) distinctive domain microstructures at room temperature, (2) a deviation of dynamical behaviour at high temperatures and (3) critical exponent mixing in the higher aspect ratio samples that accompanies this behaviour. While the critical exponents of each aspect ratio fall within mean-field predicted values, we highlight the effect that the aspect ratio has in inducing exponent mixing. Hence, furthering our understanding towards tuning and controlling avalanches which is crucial for fundamental and applied research.

2.
Phys Rev E ; 104(5-1): 054138, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942752

RESUMO

A simple numerical model to simulate athermal avalanches is presented. The model is inspired by the "porous collapse" process where the compression of porous materials generates collapse cascades, leading to power law distributed avalanches. The energy (E), amplitude (A_{max}), and size (S) exponents are derived by computer simulation in two approximations. Time-dependent "jerk" spectra are calculated in a single avalanche model where each avalanche is simulated separately from other avalanches. The average avalanche profile is parabolic, the scaling between energy and amplitude follows E∼A_{max}^{2}, and the energy exponent is ε = 1.33. Adding a general noise term in a continuous event model generates infinite avalanche sequences which allow the evaluation of waiting time distributions and pattern formation. We find the validity of the Omori law and the same exponents as in the single avalanche model. We then add spatial correlations by stipulating the ratio G/N between growth processes G (linked to a previous event location) and nucleation processes N (with new, randomly chosen nucleation sites). We found, in good approximation, a power law correlation between the energy exponent ε and the Hausdorff dimension H_{D} of the resulting collapse pattern H_{D}-1∼ɛ^{-3}. The evolving patterns depend strongly on G/N with the distribution of collapse sites equally power law distributed. Its exponent ɛ_{topo} would be linked to the dynamical exponent ε if each collapse carried an energy equivalent to the size of the collapse. A complex correlation between ɛ,ɛ_{topo}, and H_{D} emerges, depending strongly on the relative occupancy of the collapse sites in the simulation box.

3.
Sci Rep ; 11(1): 5590, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692380

RESUMO

Acoustic emission (AE) measurements of avalanches in different systems, such as domain movements in ferroics or the collapse of voids in porous materials, cannot be compared with model predictions without a detailed analysis of the AE process. In particular, most AE experiments scale the avalanche energy E, maximum amplitude Amax and duration D as E ~ Amaxx and Amax ~ Dχ with x = 2 and a poorly defined power law distribution for the duration. In contrast, simple mean field theory (MFT) predicts that x = 3 and χ = 2. The disagreement is due to details of the AE measurements: the initial acoustic strain signal of an avalanche is modified by the propagation of the acoustic wave, which is then measured by the detector. We demonstrate, by simple model simulations, that typical avalanches follow the observed AE results with x = 2 and 'half-moon' shapes for the cross-correlation. Furthermore, the size S of an avalanche does not always scale as the square of the maximum AE avalanche amplitude Amax as predicted by MFT but scales linearly S ~ Amax. We propose that the AE rise time reflects the atomistic avalanche time profile better than the duration of the AE signal.

4.
Nat Commun ; 12(1): 345, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436615

RESUMO

Field induced domain wall displacements define ferroelectric/ferroelastic hysteresis loops, which are at the core of piezoelectric, magnetoelectric and memristive devices. These collective displacements are scale invariant jumps with avalanche characteristics. Here, we analyse the spatial distribution of avalanches in ferroelectrics with different domain and transformation patterns: Pb(Mg1/3Nb2/3)O3-PbTiO3 contains complex domains with needles and junction patterns, while BaTiO3 has parallel straight domains. Nevertheless, their avalanche characteristics are indistinguishable. The energies, areas and perimeters of the switched regions are power law distributed with exponents close to predicted mean field values. At the coercive field, the area exponent decreases, while the fractal dimension increases. This fine structure of the switching process has not been detected before and suggests that switching occurs via criticality at the coercive field with fundamentally different switching geometries at and near this critical point. We conjecture that the domain switching process in ferroelectrics is universal at the coercive field.

5.
Angew Chem Int Ed Engl ; 59(45): 20224-20229, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-32729648

RESUMO

Surface acoustic waves (SAW) allow to manipulate surfaces with potential applications in catalysis, sensor and nanotechnology. SAWs were shown to cause a strong increase in catalytic activity and selectivity in many oxidation and decomposition reactions on metallic and oxidic catalysts. However, the promotion mechanism has not been unambiguously identified. Using stroboscopic X-ray photoelectron spectro-microscopy, we were able to evidence a sub-nanosecond work function change during propagation of 500 MHz SAWs on a 9 nm thick platinum film. We quantify the work function change to 455 µeV. Such a small variation rules out that electronic effects due to elastic deformation (strain) play a major role in the SAW-induced promotion of catalysis. In a second set of experiments, SAW-induced intermixing of a five monolayers thick Rh film on top of polycrystalline platinum was demonstrated to be due to enhanced thermal diffusion caused by an increase of the surface temperature by about 75 K when SAWs were excited. Reversible surface structural changes are suggested to be a major cause for catalytic promotion.

6.
Phys Rev Lett ; 124(24): 246804, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639817

RESUMO

Persistent photoconductance is a phenomenon found in many semiconductors, by which light induces long-lived excitations in electronic states. Commonly, persistent photoexcitation leads to an increase of carriers (accumulation), though occasionally it can be negative (depletion). Here, we present the quantum well at the LaAlO_{3}/SrTiO_{3} interface, where in addition to photoinduced accumulation, a secondary photoexcitation enables carrier depletion. The balance between both processes is wavelength dependent, and allows tunable accumulation or depletion in an asymmetric manner, depending on the relative arrival time of photons of different frequencies. We use Green's function formalism to describe this unconventional photoexcitation, which paves the way to an optical implementation of neurobiologically inspired spike-timing-dependent plasticity.

7.
Phys Rev Lett ; 124(13): 137202, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32302199

RESUMO

Using hybrid piezoelectric-magnetic systems we have generated large amplitude magnetization waves mediated by magnetoelasticity with up to 25 degrees variation in the magnetization orientation. We present direct imaging and quantification of both standing and propagating acoustomagnetic waves with different wavelengths, over large distances up to several millimeters in a nickel thin film.

8.
J Synchrotron Radiat ; 26(Pt 1): 184-193, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30655484

RESUMO

The quantification of surface acoustic waves (SAWs) in LiNbO3 piezoelectric crystals by stroboscopic X-ray photoemission electron microscopy (XPEEM), with a temporal smearing below 80 ps and a spatial resolution below 100 nm, is reported. The contrast mechanism is the varying piezoelectric surface potential associated with the SAW phase. Thus, kinetic energy spectra of photoemitted secondary electrons measure directly the SAW electrical amplitude and allow for the quantification of the associated strain. The stroboscopic imaging combined with a deliberate detuning allows resolving and quantifying the respective standing and propagating components of SAWs from a superposition of waves. Furthermore, standing-wave components can also be imaged by low-energy electron microscopy (LEEM). Our method opens the door to studies that quantitatively correlate SAWs excitation with a variety of sample electronic, magnetic and chemical properties.

9.
J Phys Condens Matter ; 31(8): 084003, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30537690

RESUMO

An odd-symmetry magnetic response of multiferroic composites comprising ultrathin Co layers on Pt electrodes on [Pb(Mg0.33Nb0.67)O3](1-x)[PbTiO3] x (PMN-PT) (0 1 1) piezoelectric substrates is observed upon electrical poling of the PMN-PT substrates: the magnetic easy axis of the Co rotates by 90° in-plane between oppositely poled ferroelectric states, mimicking the signature of a surface polarization charge driven effect, which however can be excluded from the presence of the thick Pt interlayer. The origin for this unexpected behavior is as an odd symmetry piezoelectric response of the PMN-PT substrate, as indicated by x-ray diffraction with applied poling, in combination with conventional magnetoelastic coupling. Ferroelectric characterization reveals corresponding features, possibly related to an unswitchable polarization component.

10.
Phys Rev Lett ; 120(21): 217601, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883130

RESUMO

Strontium titanate (SrTiO_{3}) is the quintessential material for oxide electronics. One of its hallmark features is the transition, driven by antiferrodistortive (AFD) lattice modes, from a cubic to a ferroelastic low-temperature phase. Here we investigate the evolution of the ferroelastic twin walls upon application of an electric field. Remarkably, we find that the dielectric anisotropy of tetragonal SrTiO_{3}, rather than the intrinsic domain wall polarity, is the main driving force for the motion of the twins. Based on a combined first-principles and Landau-theory analysis, we show that such anisotropy is dominated by a trilinear coupling between the polarization, the AFD lattice tilts, and a previously overlooked antiferroelectric (AFE) mode. We identify the latter AFE phonon with the so-called "R mode" at ∼440 cm^{-1}, which was previously detected in IR experiments, but whose microscopic nature was unknown.

11.
Front Physiol ; 7: 319, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27524971

RESUMO

Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.

12.
Phys Rev Lett ; 117(2): 026401, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447517

RESUMO

We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La_{2/3}Ca_{1/3}MnO_{3} around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

13.
Sci Rep ; 5: 15800, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522345

RESUMO

We have imaged optically the spatial distributions of ferroelectricity and piezoelectricity at the diffraction limit. Contributions to the birefringence from electro-optics--linked to ferroelectricity--as well as strain--arising from converse piezoelectric effects--have been recorded simultaneously in a BaTiO3 thin film. The concurrent recording of electro-optic and piezo-optic mappings revealed that, far from the ideal uniformity, the ferroelectric and piezoelectric responses were strikingly inhomogeneous, exhibiting significant fluctuations over the scale of the micrometer. The optical methods here described are appropriate to study the variations of these properties simultaneously, which are of great relevance when ferroelectrics are downscaled to small sizes for applications in data storage and processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...